

# **RHG** Heat Recovery

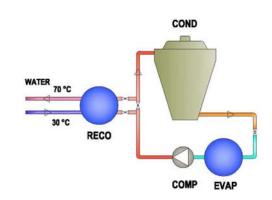




# Manfaat peralatan :

- Menghasilkan air panas untuk Mandi , Cuci atau proses industri hingga temperature 70 °C
- ♣ Tidak menggunakan bahan bakar atau listrik
- ♣ Bebas biaya pengoperasian dan biaya perawatan
- Menggantikan Hot Water Boiler atau Heat Pump
- ♣ Menurunkan pemakaian daya listrik Chiller
- ♣ Meningkatkan kapasitas pendingin Chiller






thermo Q Refrigerant Hot Gas Heat Recovery adalah peralatan cogeneration yang memanfaatkan waste energy dari Air Conditioner atau Water Chilling Unit untuk digunakan memanaskan air yang dapat digunakan untuk mandi , cuci maupun proses industri .

Peralatan ini tidak memerlukan bahan bakar ataupun listrik , panas yang dihasilkansepenuhnya diambil dari panas yang dibuang oleh system refrigerasi .

### Pemasangan unit Recovery pada Chiller





Pemasangan RHGH Reco sangat sederhana , unit dipasang disekitar Chiller , diperlukan installasi pemipaan Refrigerant pada sisi keluar Compressor dengan menambahkan beberapa valve untuk mengalihkan aliran Refrigerant menuju recovery , sewaktu waktu dapat dilakukan switching untuk memindahkan aliran refrigerant pada posisi awal sebelum dipasang recovery . Installasi pipa air panas tambahan menuju ke Hot water Storage Tank .

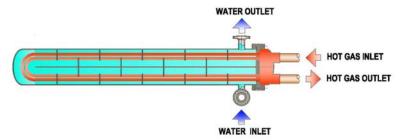
#### Kapasitas kalor yang dihasilkan unit Recovery dari Unit Chiller:

| Cooling Capacity (TR)    | 60     | 80     | 100    | 125    | 150     | 200     | 300     |
|--------------------------|--------|--------|--------|--------|---------|---------|---------|
| Total Recovery (Kcal/hr) | 46.380 | 61.840 | 77.300 | 96.630 | 115.960 | 154.610 | 193.260 |
| KW                       | 54.0   | 72.0   | 90.0   | 112.5  | 135.0   | 180.0   | 225.0   |
| Water Flow Ltr/hr :      |        |        |        |        |         |         |         |
| 50 °C                    | 2.319  | 3.092  | 3.865  | 4.831  | 5.797   | 7.730   | 9.663   |
| 55 °C                    | 1.855  | 2.474  | 3.092  | 3.865  | 4.638   | 6.184   | 7.730   |
| 0° O6                    | 1.546  | 2.061  | 2.576  | 3.221  | 3.865   | 5.153   | 6.442   |

Kapasitas tersebut adalah per jam , bila unit beroperasi 20 jam per hari = 20 X Water flow Ltr/hr Data berdasarkan , Air Cooled Reciprocating Chiller , Ambein Temp. 32  $^{\circ}$ C dan Leav. Chilled Water 7  $^{\circ}$ C Inlet water temp. 30  $^{\circ}$ C

Recovery ini dapat dipasangkan pada Chiller dengan Compressor Reciprocating maupun Scew yang menggunakan Refrigerant R 22; R 134a; R 407C; R 404A; R 507A, kecuali Centrifugal Compressor

# Peningkatan performa unit Chiller :


Dengan terpasangnya unit RHGH Reco pada Chiller maka akan terjadi penurunan pada Tekanan kondensasi yang berakibat :

- o Kerja Compressor semakin ringan dan turunnya pemakaian daya listrik .
- o Peningkatan jumlah aliran refrigerant karena terjadi perubahan volume refrigerant yang mengakibatkan meningkatnya kapasitas pendinginan (cooling capacity).

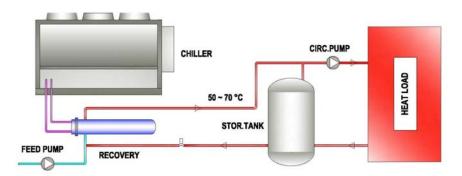
### Pemasangan unit Recovery Sangat Aman :

- □ Pressure drop atau tahanan yang terjadi pada Hot Gas saat melintasi recovery ini sangat kecil hanya 0,01 psi sehingga tidak ada pengaruh pada system.
- □ Konstruksi lintasan Hot Gas melalui Recovery ini dirancang keluar melalui bagian bawah komponen , sehingga tidak ada Refrigerant Oil yang tertinggal.
- □ Menggunakan **U-Tube** sebagai lintasan Refigerant yang sangat flexible dalam menerima perubahan temperature dan vibrasi dari Compressi gas.
- □ Pengujian tekanan (Pnuematic Test) hingga 35 Bar
- Dengan menghentikan aliran air yang melintasi Recovery . Unit akan beroperasi pada kondisi seperti sebelum terpasang Recovery , tanpa ada perubahan apapun.

#### Konstruksi Unit



Hot Gas Refrigerant memasuki Heat Recovery melalui Tube Side dengan temperature antara


83 °C hingga 100 °C dan keluar dengan temperature antara 42 °C hingga 45 °C pada bagian bawah sehingga tidak terjadi pengendapan Refrigerant Oil .

Air Dingin memasuki Heat Recovery melalui Shell Side dengan temperature antara 28 °C hingga 30 °C dan keluar dengan temperature anatar 45 °C hingga 70 °C, sesuai dengan permintaan.

- Menggunakan konstruksi U Tube dengan keuntungan :
  - o Dapat meredam vibrasi Gas dari Compressor karena sangat flexible
  - o Pada temperatur tinggi pemuaian akan terjadi pada sisi U tube
  - o Tube bundle dapat dilepas bila diperlukan perbaikan
- Pengujian tekanan ( pnuematic test ) hingga 35 bar
- Design Recovery menggunakan Standard TEMA (Tubular Exchanger Manufacturers Association) dan Fabrikasi menggunakan Standard ASME (American Society of Mechanical Engineers)

Section VIII - Division. I - Pressure vessel

# Installasi Hot Water Pipe



Installasi pemipaan air panas disesuaikan dengan installasi pemipaan yang telah terpasang dengan tidak merubah installasi yang ada .



# Penghematan bahan bakar

Dengan menggunakan RHGH Recovery , kita dapat menghemat pemakaian bahan bakar Fosil yang digunakan sebagai bahan bakar Hot Water Boiler .

Bila RHGH Recovery dioperasikan 20 jam per hari dan 360 hari pertahun , menggantikan Boiler dengan bahan bakar light oil ; efficiency Boiler adalah 87 % dan harga bahan bakar Rp. 6.100,- maka bahan bakar yang dapat dihemat adalah :

# Penghematan bahan bakar yang digunakan Boiler :

| Cooling Capacity (TR)                                     | 60            | 80            | 100           | 125            | 150             | 200             | 300             |
|-----------------------------------------------------------|---------------|---------------|---------------|----------------|-----------------|-----------------|-----------------|
| Total Recovery (Kcal/jam)                                 | 46.380        | 61.840        | 77.300        | 96.630         | 115.960         | 154.610         | 193.260         |
| Bahan bakar Boiler (Ltr/jam)<br>Dalam 1 tahun (Ltr/tahun) | 5.9<br>42,352 | 7.8<br>56,469 | 9.8<br>70,586 | 12.3<br>88,238 | 14.7<br>105,587 | 19.6<br>141,120 | 24.5<br>176,475 |
| Penghematan per Tahun                                     |               |               |               |                |                 |                 |                 |
| X Rp. 1.000 ,-                                            | 258.350       | 344.460       | 430.575       | 538.250        | 644.080         | 860.830         | 1.076.500       |

### Nilai bakar bahan bakar :

|                      | FUEL TYPE                                           | HEAT VALUE                                                          | DENCITY                        | EFFICIENCY                   |  |
|----------------------|-----------------------------------------------------|---------------------------------------------------------------------|--------------------------------|------------------------------|--|
| 1.<br>2.<br>3.<br>4. | LIGHT OIL<br>HEAVY FUEL OIL<br>NATURAL GAS<br>L.P.G | 9,063 Kcal/Ltr<br>9,766 Kcal/Ltr<br>8,915 Kcal/M3<br>17,830 Kcal/kg | 0.8373 Kg/Ltr<br>0.9492 Kg/Ltr | 87 %<br>85 %<br>90 %<br>90 % |  |



# PT. METALINDO E. ENGINEERING

# HEAT TRANSFER ENGINEERING

Jl. KH Zainal Mustafa No. 17 <u>Jakarta Timur - Jakarta</u> ( 13350 )

Telp : 021 8561234 Fax : 021 8513109

Webside : www.metalindoengineering.com E mail : info@metalindoengineering.com