Advanced™series

- We understand your needs and challenges
- We must save you time and money
- We value proven techniques as well as creative ideas
- We combine technical wisdom with common sense
- We take pride in our work

- Designed to maximize your yield
- Engineered for general and specialized applications
- Excels in difficult applications where other pumps fail
- Easy to specify, operate, and maintain
- Put our products to the test

Quality

- ISO 9001 Registration since 1994
- Equipment, procedures, and pride ensure product conformity
- Every pump is performance tested
- Quality is not a program; it is our culture

- Local service Worldwide
- Full-stocking, full-service distributors
- Formally educated in specifying and maintaining your system
- Product is available immediately
- Local training of your staff

- Committed to servicing you with our entire staff
- Service is 24 hours a day / 7 days a week
- Minimize your downtime while increasing your yield
- Spare parts when you need them
- From face time to e-commerce

- Wilden tradition of service, quality, and integrity
- We do more than sell products; we solve problems
- We attack the root cause of the problem, not the symptom
- Challenge Us

Your Needs

- Maximize containment
- Increase On/Off reliability
- Lower the cost of operation
 - Increase flow rates
 - Keep it cost effective

Our Solution

- Advanced wetted path designs
- Proven air distribution systems
- Progressive diaphragm technology
 - The result of advanced thought

The Result

- Achieve higher yields
- Increase pump performance
- Lower operational costs & downtime
- Longer MTBF (Mean Time Between Failures)
 - Your success

e result of advanced thought

Ceramics

Chemical

Dry Powder

Mining

Oil & Gas

Paint & Inks

Advanced™

SOLUTIONS

Unique Characteristics

- Variable Flow and Pressure
- Intrinsically Safe by Design
- Shear Sensitive
- Large Solids Passage
- Self-priming
- Dry Running Without Damage
- Deadhead Capable
- Portable & Submersible
- UL, CE Mark, FDA, USDA, 3A
- Ease of Operation and Maintenance

Difficult Applications

- Solvents
- Acids
- Caustics
- High Viscosity
- Low Viscosity
- Large Solids & Abrasive Media
- Hazardous Liquids
- Cleanroom Fluids
- Pressures to 17.2 bar (250 psig)

Plating & Finishing

Pulp & Paper

Sanitary

Semiconductor

Waste Treatment

VERSATILITY

Self-Priming

- Capable of pulling high vacuum
- Pump can run dry
- No heat generation
- Capability dependent upon pump size, fluid characteristics, air supply, etc.

Positive Suction Head

- Pump can draw from the bottom of vessel
- Inlet pressure should be limited to 0.7 bar (10 psig) to maximize parts life
- Preferred installation for viscous fluids

Submerged

- Many pumps can be completely submerged
- Verify that all materials of construction are compatible with fluid
- Air exhaust must be plumbed to atmosphere
- Some pumps have screened liquid inlet connections

Type:

• Positive Displacement, Reciprocatingw Air-Operated, Double-Diaphragm Pump

Major Components:

- Wetted Components Parts that come into contact with liquid
- Air Distribution System Air chambers, center block & air valve
- Elastomers Diaphragms, check valves, valve seats & o-rings

Dynamic Components:

- Two diaphragms are connected to a common shaft and act as a separation membrane between the compressed air and the liquid
- Two inlet and two discharge check valves open and then close to direct liquid flow
- The Air Distribution System alternately supplies air to the right and then the left side of the pump

Figure 1.

Figure 1.

- Air supply is directed to the left air chamber behind diaphragm A
- Diaphragm A is driven by compressed air away from the center section and toward the liquid chamber
- 3. The opposite diaphragm (diaphragm B) is pulled in by the common shaft
- Diaphragm B is now on its suction stroke while diaphragm A is on its discharge stroke
- The movement of diaphragm B toward the center block opens the bottom right check valve and closes the upper right check valve

- 6. This movement creates a vacuum within liquid chamber B
- Atmospheric pressure forces fluid into the inlet manifold, past the lower right inlet check valve and into liquid chamber B
- 8. When the pressurized diaphragm A reaches its full stroke, the air distribution system redirects the air supply to the back side of diaphragm B

Figure 2.

Figure 2.

- The pressurized air forces diaphragm B away from the center block and the common shaft pulls diaphragm A toward the center section
- The air chamber on side A exhausts its air to atmosphere
- Diaphragm B is now beginning its discharge stroke while diaphragm A is beginning its suction stroke
- 4. Diaphragm B creates hydraulic force that begins to close the lower right check valve and opens the upper right check valve
- Diaphragm A creates a vacuum that begins to open the inlet check valve (lower left) and closes the discharge check valve (upper left)

Figure 3.

- As the pump continues to stroke toward the right (toward diaphragm B), side A fills with fluid as side B discharges fluid
- When side B reaches its complete stroke, the air distribution system redirects the air supply back to side A
- When the pump completes two strokes (one on each side) a complete pumping cycle is achieved

Market Position

- ON/OFF reliability
- Longest-lasting wear parts
- Lube-free operation
- Anti-freezing

Application Traits

- Maximum reliability
- Process applications
- Max. mean time between failures
- Plastic air system required

Features

- Plastic air chambers
- Plastic C-block and A.V.
- Non-stalling unbalanced spool
- Few replaceable parts

Availability

6 mm, 13 mm, 25 mm, 38 mm, 51 mm, & 76 mm pumps (1/4", 1/2", 1", 1-1/2", 2", & 3" pumps)

V TM

Market Position

- ON/OFF reliability
- Longest-lasting wear parts
- Lube-free operation
- Superior anti-freezing
- Submersible

Application Traits

- Maximum reliability
- Process applications
- · Transfer applications
- All-metal air system required

Features

- All metal air system
- · Non-stalling unbalanced spool
- Few replaceable parts
- · Fully recaptured pilot spool vent option

Availability

• 38 mm, 51 mm & 76 mm pumps (1-1/2", 2", & 3" pumps)

O TM

Market Position

- Direct electrical interface
- Superior ON/OFF reliability
- Reduced system costs
- Lube-free operation

- Externally controlled
- Various voltage and currents
- Nema 4, Nema 7, or Cenelec
- Wilden accessory interface

Application Traits

- System automation
- 4-20 mA (pH adjusting)
- Batching applications
- OEM accounts

Features

- Simple installation

Availability

6 mm, 13 mm, 25 mm, 38 mm, 51 mm & 76 mm pumps (1/4", 1/2", 1", 1-1/2", 2", & 3" pumps)

Diaphragm Considerations

- Flex Life
- Chemical Resistance
- Temperature Limitations
- Abrasion Resistance
- · Initial Cost

Traditional Rubber Diaphragms

- Rubber diaphragms are designed to maximize life, abrasion resistance and chemical compatibility
- A nylon fabric mesh is positioned within rubber diaphragms during the molding process to strengthen the diaphragm while distributing stress

Ultra-Flex™ Diaphragm Technology

- Guaranteed longer life If longer life is not experienced, Wilden will send you a new set of Ultra-Flex™ diaphragms free of charge. See product flyer for details
- Convolute shape, altered fabric placement, and unique hardware work together to decrease the unit loading on the diaphragm and distribute stress

Thermoplastic Elastomer (TPE)

- Thermoplastic diaphragms are manufactured by molding proprietary compounds into finished parts
- Thermoplastic diaphragms are molded without fabric reinforcement due to their inherent tensile strength
- Thermoplastic diaphragms exhibit excellent abrasion resistance

Teflon® (PTFE)

- Teflon® is the most chemically inert compound
- Wilden patented our Teflon® diaphragms with concentric ribs to control the flex pattern of the diaphragm to maximize life
- A back-up diaphragm is used to provide support and lengthen the Teflon® diaphragm life

Tetra-Flex™ Technology

- Gylon® PTFE Laminate (one-piece diaphragm)
- . Guaranteed longest-lasting PTFE laminate diaphragm on the market (see product flyer for details)
- Improves the sealing characteristics of the pump
- · Handles high fluid inlet pressure applications

Please verify the chemical resistance capabilities and temperature limitations of elastomers and all other pump components prior to pump installation. Wilden publication E-4 should be consulted for specifics.

SCFM)[//m3/h]

Maximum Flow Rate

- Determined by pumping water into tanks
- The flow rate was calculated based on time and weight of water pumped
- Viscosity and specific gravity of process fluid will affect flow rates

Maximum Diameter Solids

- Maximum solids diameter figure was determined by pumping solids through pump
- The solids were non-compressible and round in size
- Geometry of solids and compressibility will affect passage

Suction Lift Capability

- Calibrated for pumps operating at 305 m (1000 ft) above sea level
- The figures listed in this brochure are the maximum lift capable for each specific pump
- Suction lift capability is affected by many variables including viscosity & specific gravity
- Consult the Engineering, Operation & Maintenance Manual for complete data

Performance Curves

- Pumps should be specified so that daily operation parameters will fall in the middle of the curve
- Many curves exist for each pump depending upon elastomeric configuration
- Consult the Engineering, Operation & Maintenance Manuals for complete data

How to Read Performance Curves

- Determine the flow rate you require and determine your discharge head
- Plot the intersection of the discharge head on the vertical axis to the flow rate on the horizontal axis (see dot)
- Locate the blue curve closest to this intersection and follow it to the vertical axis to the left
- This is the air supply pressure needed to provide the flow rate at the given head
- Locate the gray curve closest to the intersection and follow it up to where the numbers are provided
- This number is the air supply volume needed to provide the flow rate you require at the given head

Example: To pump 163 lpm (45 gpm) against a discharge pressure head of 2.8 bar (40 psig) requires 4.1 bar (60 psig) and 34 Nm³/h (20 scfm) air consumption (see dot on chart).

Temperature Range

- Temperature limitations are based upon mechanical stress only
- Specific chemicals will significantly reduce the maximum safe operating temperature
- Consult the Wilden Chemical Guide (E4) for information on specific fluids

Advanced $^{\text{\tiny M}}$

PLASTIC

P100 ADVANCED™ PLASTIC PUMP

Specifications:

Height: 277 mm (10.9")
Width: 234 mm (9.2")
Depth: 201 mm (7.9")
Air Inlet: 6 mm (1/4") FNPT
Liquid Inlet: 13 mm (1/2")
Liquid Outlet: 13 mm (1/2")

Wetted Material: Est. Ship Weight

Polypropylene: 4 kg (8 lbs) PVDF: 5 kg (10 lbs)

Elastomers:

Polyurethane Saniflex™
Buna-N Teflon®
Viton® Wil-Flex™

Performance:

Max. Flow: Rubber/TPE 58.7 lpm (15.5 gpm)

Teflon® 56.7 lpm (15.0 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 1.6 mm (1/16")

Max. Suction Lift (wet): Rubber/TPE 8.7 m (28.4')

Teflon® 9.3 m (30.6')

(dry): Rubber/TPE 5.2 m (17.0') Teflon® 4.5 m (14.7')

P200 ADVANCED™ PLASTIC PUMP

Specifications:

Height: 434 mm (17.1")
Width: 455 mm (17.9")
Depth: 229 mm (9.0")
Air Inlet: 6 mm (1/4") FNPT
Liquid Inlet: 25 mm (1")
Liquid Outlet: 25 mm (1")

Wetted Material: Est. Ship Weight

Polypropylene: 10 kg (22 lbs) PVDF: 15 kg (32 lbs) Teflon® PFA: 18 kg (40 lbs)

Elastomers:

Polyurethane Neoprene
Buna-N Teflon®
Viton® Wil-FlexTM
SaniflexTM Nordel®

Performance:

Max. Flow: Rubber/TPE 220 lpm (58 gpm)

Teflon® 174 lpm (46 gpm)

Max. Pressure: 8.6 bar (125 psig)
Max. Solids Passage: 4.8 mm (3/16")

Max. Suction Lift (wet): Rubber/TPE 9.8 m (32.0')

Teflon® 9.5 m (31.0') (dry): Rubber/TPE 3.6 m (11.9')

Teflon® 2.4 m (7.9')

PLASTIC

P400 ADVANCED™ PLASTIC PUMP

Specifications:

Height: 668 mm (26.3")
Width: 478 mm (18.8")
Depth: 300 mm (11.8")
Air Inlet: 13 mm (1/2") FNPT
Liquid Inlet: 38 mm (1-1/2")
Liquid Outlet: 38 mm (1-1/2")

Wetted Material: Est. Ship Weight

Polypropylene: 19 kg (41 lbs) PVDF: 27 kg (59 lbs)

Elastomers:

Polyurethane Neoprene
Buna-N Teflon®
Viton® Wil-FlexTM
SaniflexTM Nordel®

Performance:

Max. Flow: Rubber/TPE 454 lpm (120 gpm)

Teflon® 318 lpm (84 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 6.4 mm (1/4")

Max. Suction Lift (wet): Rubber/TPE 9.3 m (30.6')

Teflon® 9.7 m (31.8')

(dry): Rubber/TPE 5.5 m (18.2') Teflon® 3.3 m (10.8')

P800 ADVANCED™ PLASTIC PUMP

Specifications:

Height: 805 mm (31.7")
Width: 604 mm (23.8")
Depth: 353 mm (13.9")
Air Inlet: 13 mm (1/2") FNPT
Liquid Inlet: 51 mm (2")
Liquid Outlet: 51 mm (2")

Wetted Material: Est. Ship Weight

Polypropylene: 32 kg (70 lbs) PVDF: 45 kg (99 lbs)

Elastomers:

Polyurethane Neoprene
Buna-N Teflon®
Viton® Wil-Flex™
Saniflex™ Nordel®

Performance:

Max. Flow: Rubber/TPE 625 lpm (165 gpm)

Teflon® 503 lpm (133 gpm)

Max. Pressure: 8.6 bar (125 psig)

Max. Solids Passage: 6.4 mm (1/4")
Max. Suction Lift (wet): Rubber/TPE 8.7 m (28.4')

Teflon® 8.7 m (28.4')

(dry): Rubber/TPE 6.2 m (20.4') Teflon® 4.2 m (13.6')

Advanced™

PLASTIC

P1500 ADVANCED™ PLASTIC PUMP

Specifications:

Height: 1280 mm (50.4")

Width: 914 mm (36.0")

Depth: 584 mm (23.0")

Air Inlet: 19 mm (3/4") FNPT

Liquid Inlet: 76 mm (3")

Liquid Outlet: 76 mm (3")

Wetted Material: Est. Ship Weight

Polypropylene: 138 kg (305 lbs) PVDF: 161 kg (356 lbs)

Elastomers:

Teflon®

Performance:

Max. Flow: Teflon® 784 lpm (207 gpm)
Max. Pressure: 8.6 bar (125 psig)
Max. Solids Passage: 12.7 mm (1/2")
Max. Suction Lift (wet): Teflon® 8.6 m (28.0')

(dry): Teflon® 3.6 m (12.0')

Temperature

Range

- Temperature Limitations are based upon mechanical stress only
- Specific chemicals will significantly reduce the maximum safe operating temperature
- Consult Wilden's Chemical Guide (E4) for information on specific fluids

Temperature Limits

Wetted Components:

Polypropylene: 0°C to 79°C 32°F to 175°F

PVDF: -12°C to 107°C 10°F to 225°F

Teflon® PFA: -29°C to 87.7°C -20° F to 190°F

Elastomer Components:

Neoprene: -17.7°C to 93.3°C 0°F to 200°F Buna-N: -12.2°C to 82.2°C 10°F to 180°F Nordel®: -51.1°C to 137.8°C -60°F to 280°F -40°C to 176.7°C -40°F to 350°F Viton®: Wil-Flex™: -40°C to 107.2°C -40°F to 225°F Saniflex™: -28.9°C to 104.4°C -20°F to 220°F Polyurethane: -12.2°C to 65.6°C 10°F to 150°F Teflon® PTFE: 4.4°C to 104.4°C 40°F to 220°F

Advanced™ Plastic c u R v E S

Advanced™ Plastic curves

Advanced™

METAL

P400 ADVANCED™ ALUMINUM PUMP

Specifications:

Height: 594 mm (23.4")
Width: 343 mm (13.5")
Depth: 340 mm (13.4")
Air Inlet: 13 mm (1/2") FNPT
Liquid Inlet: 38 mm (1-1/2")
Liquid Outlet: 38 mm (1-1/2")

Wetted Material: Est. Ship Weight

Aluminum: 26 kg (57 lbs)

Elastomers:

Polyurethane Saniflex™
Buna-N Teflon®
Viton® Wil-Flex™
Neoprene Nordel®

Performance:

Max. Flow: Rubber/TPE 408 lpm (108 gpm)

Teflon® 321 lpm (85 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 8.0 mm (5/16")

Max. Suction Lift (wet): Rubber/TPE 9.0 m (29.5')

Teflon® 9.0 m (29.5')

(dry): Rubber/TPE 4.2 m (13.6')

Teflon® 3.4 m (11.3')

P400 ADVANCED™ SS/ALLOYC PUMP

Specifications:

Height: 528 mm (20.8")
Width: 383 mm (15.1")
Depth: 294 mm (11.6")
Air Inlet: 13 mm (1/2") FNPT
Liquid Inlet: 38 mm (1-1/2")
Liquid Outlet: 38 mm (1-1/2")

Wetted Material: Est. Ship Weight Stainless Steel: 35 kg (77 lbs)

ess Steel: 35 kg (77 lbs) Alloy C: 38 kg (83 lbs)

Elastomers:

Polyurethane Neoprene
Buna-N Teflon®
Viton® Wil-FlexTM
SaniflexTM Nordel®

Performance:

Max. Flow: Rubber/TPE 303 lpm (80 gpm)

Teflon® 295 lpm (78 gpm)

Max. Pressure: 8.6 bar (125 psig)

Max. Solids Passage: 4.8 mm (3/16")

Max. Suction Lift (wet): Rubber/TPE 8.8 m (29.0')

Teflon® 8.5 m (28.0') (dry): Rubber/TPE 5.2 m (17.0')

Teflon® 3.7 m (12.0')

PV400 ADVANCED™ ALUMINUM PUMP

Specifications:

Height 594 mm (23.4")
Width 343 mm (13.5")
Depth 310 mm (12.2")
Air Inlet 19 mm (3/4") FNPT
Liquid Inlet 38 mm (1-1/2")
Liquid Dis. 38 mm (1-1/2")

Wetted Material: Est. Ship Weight:

Aluminum 33 kg (72 lbs)

Elastomers:

Polyurethane Saniflex™
Buna-N Teflon®
Viton® Wil-Flex™
Neoprene Nordel®

Performance:

Max. Flow: Rubber/TPE 443 lpm (117 gpm)

Teflon® 307 lpm (81 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 7.9 mm (5/16")

Max. Suction Lift (wet): Rubber/TPE 9.5 m (31.2')

Teflon® 9.5 m (31.2')

(dry): Rubber/TPE 7.3 m (23.8') Teflon® 4.7 m (15.3')

PV400 ADVANCED™ SS/ALLOY C PUMP

Specifications:

Height 528 mm (20.8")
Width 384 mm (15.1")
Depth 310 mm (12.2")
Air Inlet 19 mm (3/4") FNPT
Liquid Inlet 38 mm (1-1/2")
Liquid Outlet 38 mm (1-1/2")

Wetted Material: Est. Ship Weight:

Stainless Steel 43 kg (94 lbs) Alloy C 45 kg (100 lbs)

Elastomers:

Polyurethane Saniflex™
Buna-N Teflon®
Viton® Wil-Flex™
Neoprene Nordel®

Performance:

Max. Flow: Rubber/TPE 337 lpm (89 gpm)

Teflon® 299 lpm (79 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 4.8 mm (3/16")

Max. Suction Lift (wet): Rubber/TPE 9.5 m (31.2')

Teflon® 9.5 m (31.2')

(dry): Rubber/TPE 7.3 m (23.8') Teflon® 4.7 m (15.3')

Advanced™

METAL

P800 ADVANCED™ ALUMINUM PUMP

Specifications:

Height: 759 mm (29.9") Width: 439 mm (17.3") Depth: 323 mm (12.7") Air Inlet: 13 mm (1/2") FNPT Liquid Inlet: 51 mm (2") Liquid Outlet: 51 mm (2")

Wetted Material: Est. Ship Weight

Aluminum: 41 kg (90 lbs)

Elastomers:

Polyurethane Saniflex™ Buna-N Teflon® Viton® Wil-Flex™ Neoprene Nordel®

Performance:

Max. Flow: Rubber/TPE 591 lpm (156 gpm)

Teflon® 496 lpm (131 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 6.4 mm (1/4")

Max. Suction Lift (wet): Rubber/TPE 9.5 m (31.0')

Teflon® 9.5 m (31.0')

(dry): Rubber/TPE 7.0 m (23.0')

Teflon® 4.6 m (15.0')

P800 ADVANCED™ SS/ALLOYC PUMP

Specifications:

Height: 760 mm (29.9") Width: 434 mm (17.1") Depth: 323 mm (12.7") Air Inlet: 13 mm (1/2") FNPT Liquid Inlet: 51 mm (2") Liquid Outlet: 51 mm (2")

Wetted Material: Est. Ship Weight Stainless Steel: 100 kg (220 lbs) Alloy C: 103 kg (228 lbs)

Elastomers:

Polyurethane Neoprene Buna-N Teflon® Viton[®] Wil-Flex[™] Saniflex™ Nordel®

Performance:

Max. Flow: Rubber/TPE 591 lpm (156 gpm)

Teflon® 496 lpm (131 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 6.4 mm (1/4")

Max. Suction Lift (wet): Rubber/TPE 9.5 m (31.0')

Teflon® 9.5 m (31.0') (dry): Rubber/TPE 7.0 m (23.0')

Teflon® 4.6 m (15.0')

PV800 ADVANCED™ ALUMINUM PUMP

Specifications:

Height 760 mm (29.9")
Width 439 mm (17.3")
Depth 340 mm (13.4")
Air Inlet 19 mm (3/4") FNPT
Liquid Inlet 51 mm (2")
Liquid Outlet 51 mm (2")

Wetted Material: Est. Ship Weight

Aluminum 38 kg (83 lbs)

Elastomers:

Polyurethane Saniflex™
Buna-N Teflon®
Viton® Wil-Flex™
Neoprene Nordel®

Performance:

Max. Flow: Rubber/TPE 674 lpm (178 gpm)

Teflon® 575 lpm (152 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 6.4 mm (1/4")

Max. Suction Lift (wet): Rubber/TPE 9.5 m (31.2')

Teflon® 9.5 m (31.2')

(dry): Rubber/TPE 7.3 m (23.8') Teflon® 5.4 m (17.6')

PV800 ADVANCED™ SS/ALLOY C PUMP

Specifications:

Height 760 mm (29.9")
Width 434 mm (17.1")
Depth 340 mm (13.4")
Air Inlet 19 mm (3/4") FNPT
Liquid Inlet 51 mm (2")
Liquid Outlet 51 mm (2")

Wetted Material: Est. Ship Weight Stainless Steel 103 kg (228 lbs) Alloy C 107 kg (236 lbs)

Elastomers:

Polyurethane Saniflex™
Buna-N Teflon®
Viton® Wil-Flex™
Neoprene Nordel®

Performance:

Max. Flow: Rubber/TPE 674 lpm (178 gpm)

Teflon® 575 lpm (152 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 6.4 mm (1/4")

Max. Suction Lift (wet): Rubber/TPE 9.5 m (31.2')

Teflon® 9.5 m (31.2') (dry): Rubber/TPE 7.3 m (23.8')

Teflon® 5.4 m (17.6')

Advanced $^{\text{\tiny M}}$

METAL

P1500 ADVANCED™ ALUMINUM PUMP

Specifications:

Height: 1031 mm (40.6")
Width: 615 mm (24.2")
Depth: 538 mm (21.2")
Air Inlet: 19 mm (3/4") FNPT
Liquid Inlet: 76 mm (3")
Liquid Outlet: 76 mm (3")

Wetted Material: Est. Ship Weight
Aluminum: 98 kg (215 lbs)

Elastomers:

Polyurethane SaniflexTM
Buna-N Teflon®
Viton® Wil-FlexTM
Neoprene Nordel®

Performance:

Max. Flow: Rubber/TPE 972 lpm (257 gpm)

Teflon® 750 lpm (198 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 12.7 mm (1/2")

Max. Suction Lift (wet): Rubber/TPE 9.1 m (30.0')

Teflon® 8.5 m (28.0')

(dry): Rubber/TPE 6.7 m (22.0')

Teflon® 5.2 m (17.0')

P1500 ADVANCED™ SS/ALLOY C PUMP

Specifications:

Height 894 mm (35.2")
Width 541 mm (21.3")
Depth 536 mm (21.1")
Air Inlet 19 mm (3/4") FNPT
Liquid Inlet 76 mm (3")
Liquid Outlet 76 mm (3")

Wetted Material:

Stainless Steel 125 kg (275 lbs) Alloy C 130 kg (287 lbs)

Elastomers:

Polyurethane Saniflex™
Buna-N Teflon®
Viton® Wil-Flex™
Neoprene Nordel®

Performance:

Max. Flow: Rubber/TPE 920 lpm (243 gpm)

Teflon® 708 lpm (187 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 9.5 mm (3/8")

Max. Suction Lift (wet): Rubber/TPE 9.5 m (31.0')

Teflon® 9.1 m (30.0') (dry): Rubber/TPE 7.0 m (23.0')

Teflon® 4.9 m (16.0')

I L D

Ε

PV1500 ADVANCED™ ALUMINUM PUMP

Specifications:

Height 1031 mm (40.6") Width 615 mm (24.2") Depth 422 mm (16.6") Air Inlet 19 mm (3/4") FNPT Liquid Inlet 76 mm (3") Liquid Outlet 76 mm (3")

Wetted Material: Est. Ship Weight

Aluminum 78 kg (171 lbs)

Elastomers:

Polyurethane Saniflex™ Buna-N Teflon® Viton® Wil-Flex™ Neoprene Nordel®

Performance:

Max. Flow: Rubber/TPE 999 lpm (264 gpm)

Teflon® 772 lpm (204 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 12.7 mm (1/2")

Max. Suction Lift (wet): Rubber/TPE 9.5 m (31.2')

Teflon® 9.5 m (31.2')

(dry): Rubber/TPE 7.6 m (25.0') Teflon® 5.0 m (16.5')

PV1500 ADVANCED™ SS/ALLOY C PUMP

Specifications:

Height 894 mm (35.2") Width 541 mm (21.3") Depth 422 mm (16.6") Air Inlet 19 mm (3/4") FNPT Liquid Inlet 76 mm (3") Liquid Outlet 76 mm (3")

Wetted Material: Est. Ship Weight Stainless Steel 120 kg (264 lbs) Alloy C 125 kg (276 lbs)

Elastomers:

Polyurethane Saniflex™ Buna-N Teflon® Viton® Wil-Flex™ Neoprene Nordel®

Performance:

Max. Flow: Rubber/TPE 908 lpm (240 gpm)

Teflon® 704 lpm (186 gpm)

Max. Pressure: 8.6 bar (125 psig) Max. Solids Passage: 9.5 mm (3/8")

Max. Suction Lift (wet): Rubber/TPE 9.5 m (31.2')

Teflon® 9.5 m (31.2') (dry): Rubber/TPE 7.6 m (25.0') Teflon® 5.0 m (16.5')

Rubber-Fitted Teflon®-Fitted (10) [17] (20) [34] (30) [51] (40) [68] (50) [85] BAR FEET PSIG BAR FEET PSIG 300 300 (10) [17] 275 -275 (80) [51] (40) [68] (50) [85] AIR CONSUMPTION (SCFM) [Nm³/h] (20) [34] AIR CONSUMPTION (SCFM) [Nm³/h] 250 250 225 225 6-200 -200 80 175 P400 150 150 60 125-125 **Aluminum** 100-100 -75-75-2-50 -50 **—** 25 -25 — GPM 10 20 30 40 50 60 70 80 90 100 110 120 [LPM] [36] [76] [114] [151] [189] [227] [265] [303] [341] [379] [416] [454] GPM 10 20 30 40 50 60 70 80 90 100 110 120 [LPM] [36] [76] [114] [151] [189] [227] [265] [303] [341] [379] [416] [454] (10) [17] (20) [34] (30) [51] (40) [68] (50) [85] BAR FEET PSIG (10) [17] (20) [34] (30) [51] (40) [68] (50) [85] **BAR FEET PSIG** 300 300 275 120 120 AIR CONSUMPTION (SCFM) [Nm³/h] AIR CONSUMPTION (SCFM) [Nm³/h] 250 250 225 225 6-200 200 175 5-150-150 PV400 125-125-**Aluminum** 3-100 -100 -75 -75-50 -50 — 25 -25 -0-0-**20 30 40 50 60 70 80 90 100 110 120** [76] [114] [151] [189] [227] [265] [303] [341] [379] [416] [454] **20 30 40 50 60 70 80 90 100 110 120** [76] [114] [151] [189] [227] [265] [303] [341] [379] [416] [454] BAR FEET PSIG **BAR FEET PSIG** 120 (10) [17] (20) [34] (30) [52] 300 300 120 (10)[17] 275 -275 -AIR CONSUMPTION (SCFM) [Nm³/h] 8-AIR CONSUMPTION (SCFM) [Nm³/h] [52] (40)[68] (50)[85] (60)[102] 250 -250 -30)[52] (40) [68] 225-(50) [85] 225 -(60) [102] 6-200-200 175 5 -150 150 P400 60 4 -125 SS/Alloy C 3. 100 -100 -75 -75 -50 -50 -25 -25 -GPM 10 20 30 40 50 60 70 80 90 100 110 120 [LPM] [36] [76] [114] [151] [189] [227] [265] [303] [341] [379] [416] [454] GPM 10 20 30 40 50 60 70 80 90 100 110 120 [LPM] [36] [76] [114] [151] [189] [227] [265] [303] [341] [379] [416] [454] (10) [17] (30) [51] (20) [34] (40) [68] (60) [85] (60) [102] BAR FEET PSIG BAR FEET PSIG (10) [17] (20) [34] (30) [51] (40) [68] (50) [85] (60) [102] 300 300 275-275 AIR CONSUMPTION (SCFM) [Nm³/h] AIR CONSUMPTION (SCFM) [Nm³/h] 250 250 225 6-200 200 80 80 175 175 5 -150 150 -60 **PV400** 125 125 — 100 -SS/Alloy C 100 -40 75 -75 – 2-2-50 -50 -25 -25 -0 **20 30 40 50 60 70 80 90 100 110 120** [76] [114] [151] [189] [227] [265] [303] [341] [379] [416] [454] **20 30 40 50 60 70 80 90 100 110 120** [76] [114] [151] [189] [227] [265] [303] [341] [379] [416] [454]

Rubber-Fitted Teflon®-Fitted (25) [43] (50) [485 (75) BAR FEET PSIG BAR FEET PSIG 300 300 (50) *[85]* (75) *[128]* 120 275 -120 AIR CONSUMPTION (SCFM) [Nm³/h] AIR CONSUMPTION (SCFM) [Nm³/h] 250 250 (100) *[170]* (100) [170] 100 225 225 (125) [1213] (125) [213] 6-6. 200 200 80 175 · 175 5 -P1500 150 · 150 60 60 Δ-4 — 125 · 125-Aluminum 3-100-100 -40 75 75-2-2-50 -50 -20 25 -25 -0 – 0 -OPM 20 40 60 80 100 120 140 160 180 200 220 240 260 280 [LPM] [76] [151] [227] [303] [379] [454] [530] [606] [681] [757] [833] [908] [984] [1060] GPM 20 40 60 80 100 120 140 160 180 200 220 240 260 280 [LPM] [76] [151] [227] [303] [379] [454] [530] [606] [681] [757] [833] [908] [984] [1060] BAR FEET PSIG BAR FEET PSIG 300 300 (**20**) [34] 120 (**40**) [68] (60) [102] (80) [136] (100) [170] 275 275 120 AIR CONSUMPTION (SCFM) [Nm³/h] AIR CONSUMPTION (SCFM) [Nm³/h] 250 250 (100) [170] 225 225 (120) [204] 6. 200 200 175-5-5 -150-150 -PV1500 4 -125-125-Aluminum 3-100 -3-100-75-75 -2-50 -50 -20 25 25-0-0 -0-GPM 20 40 60 80 100 120 140 160 180 200 220 240 260 280 [LPM] [76] [151] [227] [303] [379] [454] [530] [606] [681] [757] [833] [908] [984] [1060] GPM 20 40 60 80 100 120 140 160 180 200 220 240 260 280 [LPM] [76] [151] [227] [303] [379] [454] [530] [606] [681] [757] [833] [908] [984] [1060] **BAR FEET PSIG** BAR FEET PSIG (25) [43] (50) [85] (75) [128] (25) [43] (50) [85] 300 300 275 120 120 AIR CONSUMPTION (SCFM) [Nm³/h] 8. AIR CONSUMPTION (SCFM) [Nm³/h] (75) [128] 250 -250 100) [170] (100)*[170]* 225-225 6-200 -6 200 175 5-150-150 60 4 -(125)*[213]* P1500 125 -125 3-100-100 SS/Allov C 75 -2-50 -50 -20 25 -25 ON 20 40 60 80 100 120 140 160 180 200 220 240 260 280 [LPM] [76] [151][227] [303] [379] [454] [530] [606] [681] [757] [833] [908] [984] [1060] GPM 20 40 60 80 100 120 140 160 180 200 220 240 260 280 [LPM] [76] [151] [227] [303] [379] [454] [530] [606] [681] [757] [833] [908] [984] [1060] BAR FEET PSIG BAR FEET PSIG (40) [68] (60) [102] (80) [136] (100) [170] (120) [204] (40) [68] (60) [102] 300. 300 275 -275 AIR CONSUMPTION (SCFM) [Nm³/h] (80) [136] (100) [170] (120) [204] AIR CONSUMPTION (SCFM) [Nm³/h] 250 250 225-225 6-6 -200 200 80 175 175 150-150 -4-PV1500 125 -125 100-3-100 -SS/Alloy C 75 -2-2-50 -50 -20 25 -25 -0 0-0 **GPM 20 40 60 80 100 120 140 160 180 200 220 240 260 280** [LPM] [76] [151][227] [303] [379] [454] [530] [606] [681] [757] [833] [908] [984] [1060] 0-GPM 20 40 60 80 100 120 140 160 180 200 220 240 260 280 [LPM] [76] [151] [227] [303] [379] [454] [530] [606] [681] [757] [833] [908] [984] [1060]

Automate Your Process

- Batching, metering, and dispensing applications
- · Pump interfaces directly with electronic devices
- · Electronically control pump speed and operation

The Technology

- · Compressed air is the driving force to displace diaphragms and fluid
- Electrical signals dictate pump speed
- When the solenoid is unpowered, one air chamber is pressurized with compressed air, while the opposite air chamber is exhausted
- When the solenoid is powered, the pressurized air chamber is exhausted while the opposite chamber is pressurized
- By alternately applying and removing power to the solenoid, the pump operates similar to an air-operated Wilden pump
- There are no changes to the wetted path or the hydraulic principals

Benefits

- · Various AC or DC voltages
- On/Off reliable
- · Displacement repeatability
- · No lubrication needed

Configuration Options

- T-Series: An aluminum solenoid valve is attached directly to a Turbo-Flo™ center section
- P-Series: The Pro-Flo® air system is augmented to include an electronic interface spacer
- Block-Series: An Adapter Block is used in place of an air valve. A user supplied, 4-way pneumatic valve must be used in conjunction with this configuration

T-Series Valve

P-Series Valve

Solenoid Coil Options

Models Available:

A.025 (1/4")

A100 (1/2")

NEMA 4 UL CSA Approved Voltage ±10% Current (A) **Resistivity** Power(W) **Part Number** AC AC DC DC (Ω) ±10% 50 Hz 60 Hz Holding 121 00-2110-99-150 24 48 44 4.8 .20 .20 .20 24 22 32 00-2110-99-151 12 4.8 .40 .40 .40 00-2110-99-155 120 110 840

A200 (1")

A400 (1-1/2")

NEMA 7 UL CSA Approved 00-2110-99-153 12 24 22 .60 .55 .32 19 00-2110-99-154 44 .18 48 .30 **75** 00-2110-99-156 120 110 .12 475

A800 (2")

A1500 (3")

International Explosion Proof / Cenelec / PTB file# EX-91.C.2027					
00-2110-99-157	24 VDC	3.3	.135	.135	177

High Pressure

PUMPING

H 4 0 0 S

- 38 mm (1-1/2") flanged porting (300 lb. ANSI & DIN)
- Aluminum Construction with Wil-Flex™ diaphragms
- Modified Pro-Flo V[™] air distribution system

The Technology

- · Positive displacement, double-acting, Simplex type
- 2:1 liquid discharge pressure to air inlet pressure ratio
- Only one liquid chamber is used to pump fluid, the other is used as a pressure amplification chamber

Performance

- Flow rate = 242 lpm (64 gpm)
- Max. liquid discharge pressure = 17.2 bar (250 psig)
- Max. air inlet pressure = 8.6 bar (125 psig)
- Max. size solids = 8.0 mm (5/16")
- Max. suction lift = 3.1 m (10.1')

Specifications

- Height 605 mm (23.8")
- Width 345 mm (13.6")
- Depth 310 mm (12.1")

H 8 0 0

- 51 mm (2") flanged porting (300 lb. ANSI & DIN)
- 316 Stainless Steel with Wil-Flex™ diaphragms
- HP250 air distribution system

The Technology

- Positive displacement, double-acting, Duplex type
- 3:1 liquid discharge pressure to air inlet pressure ratio
- · Both liquid chambers pump fluid
- Air is alternately routed behind each diaphragm and each side of the amplifier piston to create a 3:1 pressure ratio

Performance

- Flow rate = 360 lpm (95 gpm)
- Max. liquid discharge pressure = 17.2 bar (250 psig)
- Max. air inlet pressure = 5.9 bar (85 psig)
- Max. Size Solids = 12.7 mm (1/2")
- Max. Suction Lift = 3.7 m (12')

Specifications

- Height 760 mm (29.9")
- Width 493 mm (19.4")
- Depth 541 mm (21.3")

- · Peristaltic dosing pump
- · Precise dosing and metering
- Chemical injection
- · Ability to pump two chemicals with one pump

The Technology

- Peristalsis occurs when the rotation of the rollers around the inside diameter of the tube housing compresses and dilates that pumping tube.
- Its motor turns its shaft at a constant RPM (26 or 44).
- The feed rate controller establishes the rotation of the pump roller assembly
- The feed rate is set manually via the dial ring.
- The motor rotates the pump roller assembly, which compresses the tube to the pump housing.
- Fluid is captured in the tube between rollers and is displaced as the rollers rotate.

Benefits

- Accurate within 2% of listed outputs
- Pressure to 6.9 bar (100 psig)
- Variable flow to 643 lpd (170 gpd)
- Self-priming, can run dry
- No lubrication required
- Ease of maintenance

Specifications

- UL 96FO, CSA NRTL /C, CE, ETL listed
- 110V, 220V, 230V, or 250V AC motors
- Polycarbonate construction with Wil-Flex™ tubing
- Various pump configurations available
- 4-20 mA interface available

Applications

- pH adjusting
- Paint & Ink colorant
- Boiler treatment
- Cooling tower treatment
- Dosing pesticides and fertilizer
- Solvent cutting

THE EQUALIZER WILDEN AUTOMATIC SURGE DAMPENER

BF Equalizers reduce pressure fluctuation inherent in positive displacement pumps

- Produce a smooth and even flow
- · Reduce pipe vibration and shaking
- Prevent leaking at pipe fittings and joints
- Extend and improve pump performance
- Protect in-line equipment
- Avoid damaging pressure surges

Air control options:

- Automatic
- Adjustable
- Suction Stabilizer
- Pre-charged

LC Series (Level Controllers)

- Designed for unsupervised ON/OFF operation of Wilden pumps
- It simply turns the pump ON and OFF when the fluid level reaches preset points
- Pneumatic and float-less design enables the LC series to operate effectively in applications where turbulence, foaming, sludge, or solids are present
- Inherently explosion resistant due to pneumatic operation

TGS Series
(Tank Controllers)

- High level shut-off for waste oil tanks employing a Wilden pump as the feed pump
- Mounted to the 51 mm (2") NPT bung of a waste oil tank
- When the oil in the tank reaches a set level, a red pre-warning indicator becomes visible
- At the "filled level," the air supply to the pump is shut off and the air whistle alarm sounds
- The unit resets itself automatically when oil level drops

OSC Series (Overspeed Controllers)

- The OSC is designed to prevent Wilden pumps from running dry
- Save compressed air when pump is not actually pumping fluid
- Increase parts life
- Prevent air from being pumped into your process
- The OSC controller shuts off the air supply to the pump when the pump breaks suction
- Optional air whistle serves as an alarm to alert operator

- Designed to complement and expand the application range for Accu-Flo™ pumps
- Automate your process
- Control flow rate remotely
- Interface with external inputs
- · Preventative maintenance indicator

Power Requirement:

110-120V AC @ 50/60 Hz., 220-240V AC @ 50 Hz.

Pump Output Voltage & Amps: 12V DC at no greater than 0.4 amps.

External Input Activation:

Dry contact less than 1 mA

- Microprocessor controlled batching computer designed to control the operation of Accu-Flo™ pumps
- · Automate your batching process
- Set up your application parameters via manual entry screens where text and numbers are displayed
- 4-20 mA signals can be used to control the pump speed
- Preventative maintenance indicator

Power Requirement:

110-120V AC @ 50/60 Hz., 220-230V AC @ 50/60Hz

Pump Output Voltage & Amps:

12V DC at no greater than 0.4 amps.

External Input Activation:

Dry contact less than 1 mA

MIL-GARD MONITORING SYSTEM

- · Detects diaphragm failure at the source: The Teflon® primary diaphragm
- · Sensors are located between the primary and back-up (containment) diaphragms
- · When the sensors detect a conductive liquid, an audible alarm, LED, and an internal latching relay are activated
- · Increase containment, reduce fugitive emissions, and reduce down time with 24-hour pump surveillance

Power Requirement:

110V AC, 220V AC, or 9V DC battery operation

Internal Latching Relay:

Max. 2 Amps @ 250 V

Conductivity Sensitivity:

4.54 Micro-Siemens

DRUM PUMP KIT

- Universal kit for both 6 mm (1/4") and 13mm (1/2") pumps
- Fits 51 mm (2") NPT bungholes
- · Tube length can be cut to length
- Variety of materials are available
 - Preventive maintenance indicator
 - Power cell with 7 year life expectancy
 - Interface with PLC or other equipment
 - NEMA 4X enclosure

www.wildenpump.com

Multi-Lingual Access

Marranty Registra Chemical Guide Init Converter

22069 Van Buren Street, Grand Terrace, CA 92313-5607 Telephone 909-422-1730 • Fax 909-783-3440 wilden@wildenpump.com Your Authorized Distributor:

Copyright 2004 Wilden Pump & Engineering, LLC

TT3078 S-01 ADV 12/04 Replaces S-01 ADV 03/04